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Bloch wave approach to the optics of crystals
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The Bloch wave method is used to find the effective permittivity tensor«̃ of periodic liquid crystals and
artificial structures whose periodp is short with respect to the light wavelengthl and whose optical properties
are defined by a permittivity field«(r ). The main role of the multiple scattering within the periodic medium is

evidenced, and very general expressions of«̃, based on expansions in ascending powers of the ratiop/l and

of the light wave vectork, are found. Such expansions allow to discuss the general properties of«̃, to clarify

the role of the spatial dispersions, i.e., to separate the part of«̃ explicitly depending onk from its
k-independent part, and to find some interesting properties of crystals that are~i! periodic in only one direction,
or ~ii ! locally isotropic. Finally, the limits of validity of the macroscopic model are discussed. Within these
limits only a few terms of the power expansions are required, and their expressions are explicitly given. The
obtained results are also useful to better understand the macroscopic optical properties of solid crystals.
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I. INTRODUCTION

The optical properties of crystals have been the objec
intense research in the last century. The results obtained
1954 are summarized in the classical treatise of Born
Huang@1# where the macroscopic properties are obtained
the framework of the adiabatic~or Placzek’s! approximation,
by the method of long waves. At low frequencies the el
tromagnetic interactions reduce to the unretarded Coulo
forces, but already in the infrared frequency region the re
dation effects and the radiative energy are no more ne
gible. The new energy terms greatly complicates the the

so that the effective permittivity tensor«̃ is found in Ref.@1#
under simplifying assumptions~locality in the macroscopic
sense andhomogeneity! such that all the optical propertie
related to the spatial dispersion, and in particular the opt
activity of chiral media, are lost. To take into account t
nonlocality of the electromagnetic interactions and the
croscopic inhomogeneity of matter, two different problem
must be solved. The first one, that is common to the liq
and crystal phases, has been the object of many exce
monographs@2–4# and papers@5,6#. The other one, that is
specific of crystals, has been approached in its full genera
recently@7–10#.

The two types of difficulties can be well understood in t
framework of the phenomenological approach of Agranov
and Ginsburg@11#. The liquids are treated as homogeneo
in space and time even from a microscopic point of vie
because of the averaging due to the thermal fluctuations.
tensor«̃ is therefore defined on the statistical ensemble. I
obtained by decomposing the electromagnetic field in pl
waves and it explicitly depends on the wave vectork and on
the frequencyv of the plane-wave components, i.e.,«̃

5 «̃(k,v). The assumption of homogeneity is not allow
for crystals, whose permittivity tensor also depends onr and
satisfies the relation«(r ,k;v)5«(r1l ,k;v), wherel is a
lattice vector. This fact poses the additional problems to fi
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the conditions under which it may be presumed that the t
sor «(r ,k;v) is well approximated by aneffective tensor

«̃(k,v). In any case, anapproximationis required. The aim
of this paper can now be stated as follows: we only consi
the spatial dispersion~neglecting the dependence onv of the
permittivity tensors! and neglect the dependence onk of
«(r ;k). Our problem reduces therefore to find the mac

scopic permittivity tensor«̃(k), by assuming that the optica
properties of the crystal are fully defined by a continuo
permittivity function«(r ). For solid crystals, the assumptio
that«(r ) is independent ofk is certainly not valid. It is done
for sake of simplicity, and because it is important to separ

the contribution to«̃(k) of the periodic inhomogeneity of the
medium from the other contributions. For liquid crystals t
assumption is well motivated. It is in fact well known th
the dominant contribution to the optical activity~and more
generally to the spatial dispersion! of periodic liquid crystals
is related to the helical arrangement of their molecules.
general, the intrinsic contribution defined by«(r ;k), and due
to the chirality of the constituent molecules, is negligib
Moreover, helical structures made of achiral molecules h
been recently discovered@12–14#. Their chirality and optical
activity are therefore entirely due to the periodic superstr
ture. In short period liquid crystals, the continuous functi
«(r ) defines the optical properties on amesoscopic scale,
where the details of the structures on the molecular scale
disregarded. In solid crystals,«(r ) defines the optical prop
erties of the statistical ensemble.

The standard method to define«̃(k) as a function of«(r )
is based on the following facts. A plane-wave decomposit
of the optical field is suitable in homogeneous media,
cause the plane waves are eigenmodes of the electromag
field. In periodic media, the eigenmodes are Bloch wa
and can be decomposed in interacting plane waves. The
fective ~homogeneous! medium is implicitly defined by only
considering the long-wavelength component, that repres
the macroscopic field@15#. The wavelengths of the neglecte
©2001 The American Physical Society04-1
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components are in the order of magnitude of the lattice
riod p or smaller. We therefore expect that they have v
small macroscopic effects in solid crystals, becausep!l. In
liquid crystals the ratiop/l can in principle have any value
so that the definition of the limits of validity of the homog
neous model becomes essential.

The Bloch wave method has been largely used for s
crystals@1,11,15#. It has been extended to liquid crystals b
Zeldovich and Tabiryan@16# and by Galatola@8#. This paper
is a continuation of the research done by Galatola. It give
contribution to the solution of one of the problems posed
not solved by Born and Huang@1#, and treats quantitatively
some of the problems that have been qualitatively discus
by Agranovich and Ginsburg in their phenomenological a
proach to the spatial dispersion in crystals@11#.

II. BASIC EQUATIONS

The effective dielectric tensor«̃ of the macroscopic mode
is a function of the Fourier components of«(r ), i.e., of the
tensors«q defined through

«~r !5(
q

«q exp~ iq•r !. ~1!

The component of order zero is the space average of«(r ),
i.e.,

«05 «̄, ~2!

and constitutes a first rough approximation for«̃. The other
approximations are obtained by adding to«̄ terms having the
general structure,

«q1
G2q1

«q2
G2(q11q2)•••G2(q11•••1qN21)«qN

, ~3!

where

Gq5S v

c D 2

@~k1q!2I2~k1q!~k1q!2 «̄ #21, ~4!

and where the vectorsqn satisfy the relations

qnÞ0, ~5!

q11q2Þ0, . . . , q11•••1qN21Þ0, and

q11•••1qN50. ~6!

In Eq. ~4!, k is the wave vector of the plane-waves prop
gating in the effective homogeneous medium,I is the 333
identity matrix, and (k1q)(k1q) is a dyadic product.

The formal expression of«̃ can be written as

«̃5 «̄1 (
N52

`

(
q1

••• (
qN21

«q1
G2q1

«q2

3G2(q11q2)•••G2(q11•••1qN21)«2(q11•••1qN21) .

~7!
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The summations in Eq.~7! take into account the multiple
scattering within the medium. More precisely, they give t
additional contribution to«̃ arising from the inhomogeneity
of the periodic medium on the mesoscopic scale. In fact,
~5! states that only the components«q with qÞ0, which
define the inhomogeneous part of the medium, are invol
~the homogeneous contribution is already included into«̄).
Equations~6! define the multiplicityN of the scattering and
state that only the forward scattering contributes to«̃(k)
@17#.

The equations given here are a simple generalization
the equations derived by Galatola@8#, who only considers
the double scattering. Terms that contain theq components
of the polarization current already appear in the microsco
approach of Born and Huang, in Sec. 44 of Ref.@1#, but they
are neglected in those following sections where the opt
properties of solid crystals are considered.

III. THE DIFFERENT APPROXIMATIONS

As discussed in the introduction, the definition of the e
fective tensor«̃(k) in crystals requires some approximation
The Bloch wave method neglects the short-wavelength c
ponents of the normal modes. The very structure of the
~7! requires a further approximation, since the summat
over N has to be stopped at some finite valueNmax in actual
computations. If the modulation amplitude of«(r ) and con-
sequently the components«q are small with respect to«̄, the
dominant terms in the summation are the ones correspon
to N52 ~double scattering!. In general, the approximation
already considered by Galatola is good enough. Howeve
will be shown in Sec. V that for locally isotropic crystals th
terms corresponding toN53 could be the dominant ones.

It is evident that the complexity of the expression of«̃(k)
essentially depends on the number of the relevant Fou
components«q of «(r ). The most important liquid crystals
are periodic in only one direction~1D crystals! and have a
very limited number of nonzero components: three in
cholesteric phase and five in the chiral smectic phasesC* .
For such crystals, the expression of«̃(k) is simple. However,
the structure of the matricesGq is such that it is not easy to
have an intuitive feeling of the dependence of«̃(k) on the
relevant parameters, as for instance the period of the st
ture and the light wave vector. It is therefore convenient
find approximate expressions forGq .

In one-dimensional~1D! crystals having periodp and pe-
riodicity directionx3, Eq. ~1! writes

«~x3!5(
r

« r exp~ irqx3!, ~8!

whereq52p/p. The matricesGq only depend on the intege
numberr and the matrixG[G1, corresponding toq5qx̂3
~i.e., to r 51), can be written as
4-2
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G5S p

l D 2F S x̂31
p

l
nD 2

I

2S x̂31
p

l
nD S x̂31

p

l
nD2S p

l D 2

«̄G21

, ~9!

where

n5
k

k0
[

c

v
k. ~10!

The expression~9! of G suggests to expand this matrix in
Fourier series of the parameterp/l as

G5G(0)1S p

l DG(1)1S p

l D 2

G(2)1•••. ~11!

The matrix Gr , corresponding to the reciprocal vectorq
5rqx̂3, only differs fromG for the fact that one must setrq
instead ofq. This is equivalent to substitutep with p/r in Eq.
~9!, andG(m) with

Gr
(m)5r 2mG(m) ~12!

in Eq. ~11!. The tensor«̃ depends onp/l only through the
matricesGr

(m) , and it can be written as

«̃5 «̃ (0)1S p

l D «̃ (1)1S p

l D 2

«̃ (2)1•••, ~13!

where the coefficients«̃ (m) contain in principle an infinite
number of summations, corresponding toN-photon scatter-
ing with N52,3 . . . . Up toN53, the matrices«̃ (0), «̃ (1),
and «̃ (2) are

«̃ (0)5 «̄1(
rÞ0

« rG2r
(0)«2r1(

rÞ0
(

r 8Þ0,2r

« rG2r
(0)« r 8

3G2(r 81r )
(0) «2(r 81r ) ,

«̃ (1)5(
rÞ0

« rG2r
(1)«2r1(

rÞ0
(

r 8Þ0,2r
~« rG2r

(0)« r 8G2(r 81r )
(1)

3«2(r 81r )1« rG2r
(1)« r 8G2(r 81r )

(0) «2(r 81r )!, ~14!

«̃ (2)5(
rÞ0

« rG2r
(2)«2r1(

rÞ0
(

r 8Þ0,2r
~« rG2r

(0)« r 8G2(r 81r )
(2)

3«2(r 81r )1« rG2r
(1)« r 8G2(r 81r )

(1) «2(r 81r )

1« rG2r
(2)« r 8G2(r 81r )

(0) «2(r 81r )!,

where

G(0)52
1

«̄33
S 0 0 0

0 0 0

0 0 1
D ,
02170
G(1)52
1

«̄33
S 0 0 n1

0 0 n2

n1 n2 g33
(1)
D ,

G(2)52
1

«̄33
S «̄332n1

2 2n1n2 g13
(2)

2n1n2 «̄332n2
2 g23

(2)

g13
(2) g23

(2) g33
(2)
D , ~15!

and

g33
(1)52

2

«̄33

~ «̄13n11 «̄23n2!,

g13
(2)5~n32g33

(1)!n12 «̄13,
~16!

g23
(2)5~n32g33

(1)!n22 «̄23,

g33
(2)52g33

(1)21
1

«̄33

@ «̄13
2 1 «̄23

2 1 «̄11n1
21 «̄22n2

2

22~ «̄13n1n31 «̄23n2n32 «̄12n1n2!#.

A new set of approximations is obtained by only consider
in Eq. ~13! the terms up to (p/l)m. The lower order approxi-
mations, corresponding tom50,1 andN52, are the most
important ones and are indeed given by very simple exp
sions.

A different and even more important way to represe
«̃(n) is an expansion in power series of the normalized wa
vectorn as

«̃ i j ~n!5 «̃ i j ~0!1a i j l nl1b i j lmnlnm1•••, ~17!

that gives another set of possible approximations. It is
portant to observe that the different terms of this last exp
sion do not strictly correspond to the terms of the expans
in power series ofp/l, because the tensorG(m) contains
terms scaling as (p/l)m8, with m85m,m22, . . . .This fact
appears evident if we consider the definition ofG(m) given
by Eqs.~9! and~11! @or the expression ofG(2), Eq. ~15!#. In
particular, the second rank tensor«̃ i j (0) is obtained by add-
ing to « (0) terms scaling as (p/l)2,(p/l)4, . . . , and the
third rank tensor «̃ i j l contains terms scaling a
(p/l),(p/l)3, . . . .

In conclusion, the Bloch wave method generates ma
approximations for«̃(n) that depend on the maximum value
of three parameters: the multiplicity of the scattering, t
power of (p/l) and the rank of the tensors appearing in E
~17!. The last two are obtained by expanding the mat
G(p/l,n) in power series of (p/l) or of n. They are not
strictly necessary, becauseG(p/l,n) is already given by an
analytic expression, but they are of the most importance
the study of the optical properties of crystals.

The above analysis is easily extended to 3D crystals.
cartesian frame withx̂3[q̂, the tensorGq is still given by
4-3
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Eq. ~9!, where (p/l) is substituted by 2p(uqul)21. Each
tensorGq can be expanded in power series of this last
rameter, but an expansion of all the tensorsGq in power
series of (p̄/l), where p̄ is an average dimension of th
lattice cell, is more convenient and easily obtained. As i
evident, the expression of«̃ becomes rather involved, exce
for some cubic crystals. However, the fact to be able to
press«̃ by means of series expansions of the type~13! and
~14! allows to find some important properties of these tens
and of «̃(n).

IV. OPTICAL ACTIVITY

We discuss here the properties of«̃(n), by assuming that
all the elements of«(r ) are real. This means that we ar
consideringnondissipativeand locally nonchiral crystals.
The reality of«(r ) has the following important implication
in Eq. ~13!, the terms scaling as (p/l)m arereal if m is even
and purely imaginary if m is odd.

For the two-photon scattering, this property is imme
ately found by adding the two terms that contain«q and«2q
and taking into account the fact that real«(r ) implies realGq
with

G2q
(m)5~21!mGq

(m) , ~18!

because in defining Eq.~9! a sign change ofq5qx̂3 is fully
equivalent to a sign change ofp/l and

« i j ~2q!5« i j* ~q!. ~19!

The extension to theN-photon scattering is straightforward
The effective dielectric tensor of a crystal defined by

real tensor«(r ) can therefore be written as«̃5 «̃81 i «̃9,
where

«̃85 «̄1 (
m even

S p

l D m

«̃ (m), «̃95 (
m odd

S p

l D m

«̃ (m). ~20!

We recall that in the Born-Landau formalism, used here,
imaginary part of«̃(n) defines the optical activity of the
medium, that is the most important optical property rela
to the spatial dispersion. Since the tensor of rankm, in the
expansion~17! of «̃(n), contains terms scaling as (p/l)m8,
with m85m,m12, . . . , Eq.~20! implies that such tensor
are real ifm is even, purely imaginary ifm is odd. We re-
cover here a well known property of«̃(n), which in the
Landau approach@18# is a consequence of the fact that t
quantity nl5(v/c)kl appearing in the expression of«̃(n)
comes from the space derivative]Ej /]xl , that for plane
waves reduces toik lEj .

Our analysis allows us to find many interesting propert
of crystals, and in particular the following ones, related
the optical activity. In the two-photon approximation, th
contribution of«q to the optical activity of the terms linear i
(p/l) is zero for light parallel toq. For the particular case o
1D crystals, all theterms of«̃ scaling as p/l are identically
02170
-

s

-

rs

-

e

d

s

zero for light propagating along the periodicity direction.
This property is a simple consequence of the fact that
terms appearing in the expression of«̃ (1), Eq. ~14!, contain
the tensorG(1) that, according to Eqs.~15! and ~16!, be-
comes identically zero ifn5k/k0 is parallel tox3. Let us
now discuss some interesting consequences of this impo
property.

Cholesteric liquid crystals are known for their huge ro
tory power for light parallel to their helix axis, in the wave
length range frompune2nou to p, wherene and no are the
local extraordinary and ordinary refractive indices@19#. For
higher wavelengths the medium can still rotate the polari
tion plane of light, but the rotatory power abruptly drop
becoming negligible forl.5p. This unusual property is
known since 1951@20#, but it has never received a simp
explanation. According to our analysis, it is a particular ca
of a very general property, valid for any 1D crystal. In th
absence of the term scaling as (p/l), the main term giving
optical activity scales as (p/l)3. To evidence the practica
consequences of this fact we recall that the most impor
effect of the optical activity is the uniform rotation of th
polarization plane of light, a fact that in anisotropic crysta
only occurs for light propagating along their optic axes, b
cause in the other directions linearly polarized light becom
elliptically polarized and the major ellipse’s axis oscillat
around a given direction. The simplest and most known
crystals, as for instance cholesterics, chiral smectic C, m
TGB crystals, and Reusch piles@21#, are macroscopically
uniaxial with the optic axis along the periodicity direction.
the limit of smallp/l values, the uniform optical rotation o
such crystals is therefore in general of little interest for a
plications, because it comes from a term scaling as (p/l)3,
which gives a rotatory power scaling asp3/l4. The optical
activity in, short period, 1D crystals can therefore be of
terest for applications if and only ifan optic axis of the
effective medium is not in their periodicity direction.

V. LOCALLY ISOTROPIC CRYSTALS

In what follows, we will consider the simple case of lo
cally isotropic crystals, whose dielectric tensor can be w
ten as«(r )I, where«(r ) is a scalar quantity andI is the 3
33 identity matrix, that in the following will be omitted
The homogeneous medium is in general anisotropic, ow
to the presence of the tensorsGq

(m) in the expression of«̃,
Eq. ~7!. This equation greatly simplifies because the Four
component«q commutes with«q8 and with the matrices
Gq

(m) . As a consequence of this fact and of the property~18!,

the terms of«̃ coming from two-photon scattering canc
each other and give no contribution to the optical activity.
fact the quantity

«2qGq
(m)«q1«qG2q

(m)«2q5Gq
(m)@«2q«q1~21!m«q«2q#

~21!

is identically zero for oddm. The contribution to the optica
activity of locally isotropic crystals only comes from scatte
ing involving at least three photonsor from the intrinsic
chirality of the constituent molecules.
4-4
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A further simplification, concerning the tensorsG(m), comes from the fact that the tensor«̄ appearing in their expression
is now a scalar quantity. In a coordinate system wherex̂3[q̂, the first five tensorsG(m) are represented by the matrices

G(0)52
1

«̄ S 0 0 0

0 0 0

0 0 1
D , G(1)52

1

«̄ S 0 0 n1

0 0 n2

n1 n2 0
D , G(2)5

1

«̄ S «̄2n1
2 2n1n2 n1n3

2n1n2 «̄2n2
2 n2n3

n1n3 n2n3 n1
21n2

2
D ,

G(3)5
1

«̄ S 22n3~ «̄2n1
2! 2n1n2n3 n1a

2n1n2n3 22n3~ «̄2n2
2! n2a

n1a n2a 22n3~n1
21n2

2!
D , ~22!

G(4)5
1

«̄ S ~ «̄2n1
2! 2n1n2 n1n3c

2n1n2 ~ «̄2n2
2! n2n3c

n1n3c n2n3c ~n1
21n2

2!
D ~2n3
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a5n1
21n2

22n3
22 «̄,

c52~2n3
213a!/~2n3

22a!. ~23!

If the spatial dispersion is neglected, the effective medium
uniaxial with the optic axis coincident withx3, because of
the full rotational symmetry (C`) of «(r ) around this axis.
The spatial dispersion breaks the uniaxial symmetry of«̃(n),
except for the particular case of light propagating alongx3.

VI. LIMITS OF VALIDITY OF THE MACROSCOPIC
MODEL: THE ROLE OF SPATIAL DISPERSION

As repeatedly stated in the preceding sections, many
proximations are required to define the effective permittiv
tensor«̃(n) in crystals. The definition of the limits of validity
of the macroscopic models is therefore as important as
definition of «̃(n). It is particularly interesting for liquid
crystals, since the ratio (p/l) can have any value. In thi
section we consider the models that take into account
multiple scattering up toN54 and the powers of (p/l) up to
m5`. The cases withm52 andm54 are considered in the
next section.

To test the limits of validity of the macroscopic mode
we compare the optical field generated by an external p
wave within a semi-infinite crystal and the field generated
the corresponding homogeneous medium. This is a good
but it poses problems that are not easy to be resolved.

For the homogeneous medium, the main difficulty com
from the boundary conditions required in the presence
spatial dispersion. As far as we know, such problem
never been approached in its full generality. The difficulty
due to the fact that the terms of«̃(k) depending on them
power ofk come from the space derivatives of orderm of the
electric field. In the presence of these derivatives, the u
02170
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conditions of continuity for the tangential components of t
field vectorsE and H are no more valid. The problem ha
been at least partially solved only for the simple case of fi
order derivatives@22–25#. To avoid the use of the boundar
conditions, we consider the wave vectorsk j ( j 51,2) of the
internal plane-waves generated by the external one. F
macroscopically uniaxial medium with the optic axisx3 par-
allel to the incidence plane~Fig. 1!, the vectorsk1 and k2
refer to the TE and TM polarized waves. The componentkx
is equal to the tangential component of the external w
~phase matching condition!, the z components arek0nj ,
wherenj are the eigenvalues of the 434 matrixB appearing
in the propagation equation:

db

dz
5 ik0B~k!b, ~24!

where b is a four-dimensional column vector that, in th
Berreman formalism@26#, is defined as the transpose of th
row vector (ex ,hy ,ey ,2hx), wheree5(m0 /e0)(21/4)E and
h5(m0 /e0)(1/4)H. In the optical geometry of Fig. 1, the
equation system~24! splits in the two independent system

FIG. 1. Optical geometry:k i is the wave vector of the inpu
light, x3 is the symmetry axis of the crystal.
4-5
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d

dzS ex

hy
D 5 ik0S 2nx«̃xz / «̃zz 12nx

2/ «̃zz

«̃xx2 «̃xz«̃zx / «̃zz 2nx«̃xz / «̃zz
D S ex

hy
D ,

~25!

d

dzS ey

2hx
D 5 ik0S 0 1

«̃yy2nx
2 0D S ey

2hx
D , ~26!

corresponding to TM and TE polarization states, resp
tively. The difficulty of our problem reduces now to the fa
that the matrix B explicitly depends on its eigenvalue
through the quantities«̃ i j (k), i.e., B5B(k). We have com-
putedkz with the following iteration procedure. We first in
sert in Eqs.~25! and ~26! the tensor«̃(0) obtained by ne-
glecting the k-dependent part of«̃(k), to obtain a first
approximation forkz5k0n. Each one of thesekz values is
now inserted in«̃(k) to obtain a better approximation. Th
iteration of this procedure gives rapidly converging valu
for kz .

For the periodic medium, general and reasonably sim
methods giving the internal field are available for 1D cry
tals. We have used the method developed in@27#, that makes
use of a propagation equation formally identical to Eq.~24!,
where the vectorb and the matrixB become infinite dimen-
sional. The eigenvectors ofB define the Bloch waves gene
ated within the crystal by the external one, the correspond
eigenvaluesnj ( j 52`,`) definekj ,z5k0nj . Herek j is the
wave vector of the long-wavelength component of t
j-Bloch wave~the wave vectors of the other components
k j1q). In general, only a limited number of eigenvaluesnj
are real. They correspond to propagating modes and de
the bulk properties of the electromagnetic field within t
medium. The other ones are only present in a boundary la
having finite thickness. They are responsible for some in
esting boundary effects@9,25#, that are not considered here

To compare the wave vectors given by the mesosco
and macroscopic models, we have considered the sim
case of a locally isotropic medium whose dielectric tenso
given by« i j 5«(x3)d i j , with

«~x3!5 «̄12«1 cos~qx3!

[«̄1«1@exp~2 iqx3!1exp~ iqx3!#. ~27!

The local isotropy and the fact thatx3 is an axis of full
rotational symmetry ensure that the TM and TE polarizatio
are not coupled. Since«(r )5«(2r ), the structure is achira
and macroscopically uniaxial, with the optic axis parallel
x3 ~we have purposely considered an achiral system, bec
the validity of the macroscopic model for chiral systems h
already been discussed in@9,10#!.

The Figs. 2 and 3 give the plots vsp/l of the quantity
nz5kz /k0, that represents an effective refractive index ifkx

5ky50. In Fig. 2, thek-dependent terms of«̃ are neglected,
i.e., «̃5 «̃(0), whereas they are taken into account in Fig.
The full curves give thenj values of the propagating mode
in the periodic medium, which are exactly the same in
02170
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e

two figures. The Fig. 2 shows that the approximation«̃
5«(0) is not valid for largep/l values, thus evidencing th
main role played by the spatial dispersion forp/l.0.1. In
Fig. 3, two full curves are rather well fitted by the mode
Despite this fact, it is evident that the macroscopic mo
loses any meaning forp>l, where more than two full
curves are present. Here the periodic medium gives Br
diffraction, and the lowernj curves give thekz values of the
diffracted waves.

At oblique incidence, a diffracted beam of nonzero ord
can appear at lowerp values, thus restricting the range o

FIG. 2. Componentsnz of the normalized wave vectorn
5k/k0 for the running modes in the periodic medium~full lines!
optically defined by Eq.~27! and for the plane waves in a homog

neous medium with dielectric tensor«̃(0), in theoptical geometry

of Fig. 1, and with the following parameters:q i50, q5p/2, «̄
51, «150.25. In the two upper curves the quantitynz has the
meaning of an effective refractive index. The figure also describ

medium with «̄Þ1, if we substitute«1 with «1 / «̄, nz with nzA«̄

andl with lA«̄.

FIG. 3. Same as Fig. 2, with«̃(k) instead of«̃(0).
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validity of the model by a factor 2. In the considered geo
etry, with x3 orthogonal to the layer normal (q5p/2), the
model is valid up top value nearly equal to one-half of th
internal wavelength,namely, in the whole p interval wher
the external wave can never give rise to Bragg diffracti
~see Fig. 4!.

Let us now consider the case withqÞp/2. If x3 makes an
angleq with z, a sample of the crystal between the plan
z5z0 and z5z01d behaves as a grating with grating co
stanta5p/sinq. For a.l, i.e., for p/l.sinq, it gives dif-
fracted beams of ordermÞ0. Despite this fact, our compu
tations suggest that the macroscopic model can still
usefully applied in this interval, up top/l'0.5, because in
this range the grating works in the Raman-Nath regime
the intensity of diffracted beams is generally very small.

VII. LIMITS OF VALIDITY OF THE LOWER ORDER
APPROXIMATIONS

The use of the macroscopic model can avoid the he
calculations required by the actual periodic crystal. Howe
the full expression of«̃(k) given by Eq.~7! is still rather
involved and requires a numerical analysis. In this sect
we compare thek values given by the full expression of«̃(k)
with the approximations obtained by considering the fi
terms of its expansion in a power series of (p/l). To this
purpose, we consider the crystal defined by Eq.~27! and
make use of a reference framex1 , x2 , x3 with x3 along the
periodicity axis. In this frame, the tensor«̃(0) is diagonal,
with «̃115 «̃225 «̃' , «̃335 «̃ uu . In the two-photon approxima
tion, such quantities are

FIG. 4. Real partnz8 and imaginary partnz9 of nz5kz /k0 vs the
incidence angle for the Bloch waves within the periodic medi
~full lines! and for the plane waves within the macroscopic medi

defined by«̃(k). The periodic medium is the same as in Fig. 2, w
p50.25l. The optical geometry is given in Fig. 1, withq50. The
refractive index of the external medium isni51.5. The quantitynz

is real at the left side of the total reflection angle, purely imagin
at the right side.
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«̃'5 «̄12«1
2S p

l D 2

12«1
2«̄S p

l D 4

,

«̃ uu5 «̄22«1
2«̄. ~28!

The tensor «̃(n) is given by «̃5 «̃(0)1 «̃ (2)(n)(p/l)2

1 «̃ (4)(n)(p/l)4, where n5k/k0 and the tensors« (2)(n),
« (4)(n) are easily derived from the equations given in Se
IV and V.

In the optical geometry defined by Fig. 1, withx3[x and
normally incident light, the effective refractive indexn sat-
isfies the equations

«̃ uu1
«1

2

2«̄
n2S p

l D 2

1
«1

2

2«̄
n2~ «̄2n2!S p

l D 4

2n250,

«̃'2
«1

2

2
n2S p

l D 4

2n250, ~29!

for the TM and TE polarizations, respectively. Interesting
the first equation is biquadratic and gives therefore t
couples of solutions. In general, the dispersion relation
presence of spatial dispersion can give many solutions,
only four are physically acceptable. Here, a couple of so
tions of the first equation diverges forp/l→0, giving an
internal wavelength smaller thanp, i.e., outside the limits of
validity of the model~the conditions under which a third
couple of solutions could be physically meaningful are d
cussed in Ref.@11#!.

The solutions given by the above approximation ha
been compared with the ones obtained in Sec. VI in
approximation up to (p/l)`. Figure 5 shows that even th
simple (p/l)2 approximation, where the terms scaling
(p/l)4 are neglected, is good enough to any practical p
pose in the whole range of validity of the macroscopic mo
~at least for the periodic medium considered here!.

VIII. SUMMARY AND CONCLUDING REMARKS

A very general and fully analytic expression is found f
the tensor«̃ of short periodic crystals, that is formally writte
as the sum of the space average«̄ of «(r ) and of terms that
take into account the multiple scattering due to the inhom
geneity of the structure on a mesoscopic scale. In genera
the terms corresponding to scattering with multiplicityN

>2 give a contribution to«̃, whose imaginary part«̃9 is
related to the optical activity of the medium and is iden
cally zero for achiral media. However for locally isotrop
and chiral crystals, the contribution to«̃9 of the terms with
N52 is identically zero. As a consequence of this fact,
optical activity of such crystals scales as (d«)3, where (d«)
is the difference between the maximum and the minim
value of«(r ).

The macroscopic medium displays strong spatial disp
sion, i.e.,«̃5 «̃(k), wherek is the light wave vector. Both
«̃(k) and its nondispersive part«̃(0) are expanded in powe
series of the ratiop/l, to better describe the optical prope

y
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FIG. 5. Difference between the refractive in
dices of the homogeneous medium computed
any order ofp/l and the ones given by the ap
proximation with terms up to (p/l)2 for two dif-
ferent values of«1. The periodic medium is the
same as in Fig. 2 and the optical geometry
given in Fig. 1, withq5p/2.
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ties of the medium and to find simple approximate expr
sions for these tensors. The obtained equations show tha
optical activity of a crystal, that is periodic in only one d
rectionx3, is negligibly small for light propagating alongx3.
More precisely, it scales as (p/l)3. This unusual scaling law
already known for cholesteric liquid crystals, receives h
an explanation and is generalized to all 1D crystals.

The limits of validity of macroscopic models, already di
cussed in@9,10#, are reconsidered on the basis of the eq
tions given here. For achiral crystals, the approximation«̃

5 «̃(0) is generally valid up top/l'0.1. This approxima-
tion is particularly interesting because it allows to make u
of the usual and well known boundary conditions for t
field vectorsE andH. The full expression«̃(k) extends the
validity of the model up top/l'0.5. Even the lowest orde
approximations, which consider only a few terms in t
(p/l)m expansion, are generally very good. However,
model could fail in some very particular optical geometrie
as discussed at the end of Sec. VI.

Let us now recall some still open problems, and sugg
2

ic

02170
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some possible developments of the research. The most
portant unsolved problem concerns the definition of a s
consistent set of bulk and boundary conditions in the pr
ence of spatial dispersion. This problem is under stu
together with the important problems of the boundary effe
in crystals and of the limits of validity of homogeneous mo
els for 2D and 3D crystals.

As an obvious continuation of this research, we are c
sidering the application of the found equations to cryst
whose tensor field«(r ) is known, and in particular to som
interesting periodic liquid crystals phases and artificial str
tures. For such crystals, the equations given here are per
the most convenient published up to today, at least for
bulk properties. For this purpose, we observe that in theLC

literature the trivial approximation«̃5 «̄ is generally used for
periodic crystals withp,l, because of the lacking of bette
and reasonably simple approximations.

We also presume that an extension of the theory to c
tals with some degree of randomness and to the acou
waves could be of interest.
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