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Bloch wave approach to the optics of crystals
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The Bloch wave method is used to find the effective permittivity tersof periodic liquid crystals and
artificial structures whose periqais short with respect to the light wavelengthand whose optical properties
are defined by a permittivity field(r). The main role of the multiple scattering within the periodic medium is
evidenced, and very general expressions dbased on expansions in ascending powers of the paticand
of the light wave vectok, are found. Such expansions allow to discuss the general properiesmtlarify
the role of the spatial dispersions, i.e., to separate the paw ekplicity depending onk from its
k-independent part, and to find some interesting properties of crystals th@t@eeiodic in only one direction,
or (ii) locally isotropic. Finally, the limits of validity of the macroscopic model are discussed. Within these
limits only a few terms of the power expansions are required, and their expressions are explicitly given. The
obtained results are also useful to better understand the macroscopic optical properties of solid crystals.
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[. INTRODUCTION the conditions under which it may be presumed that the ten-
sor e(r,k;w) is well approximated by areffectivetensor

The optical properties of crystals have been the object Of (k, ). In any case, aapproximationis required. The aim
intense research in the last century. The results obtained tiflf this paper can now be stated as follows: we only consider
1954 are summarized in the classical treatise of Born anghe spatial dispersiofeglecting the dependence erof the
Huang[1] where the macroscopic properties are obtained irhermittivity tensors and neglect the dependence knof
the framework of the adiabatior Placzek’s appro.ximation, e(r;k). Our problem reduces therefore to find the macro-
by the method of long waves. At low frequencies the elec- copic permittivity tensog (k), by assuming that the optical

tromagnetic mterac_tlons r_educe to the unretarc_ied COUIomEroperties of the crystal are fully defined by a continuous
forces, but already in the infrared frequency region the retar:

. o permittivity functione(r). For solid crystals, the assumption
dation effects and the radiative energy are no more negli; L . . . .
) ) thate(r) is independent ok is certainly not valid. It is done
gible. The new energy terms greatly complicates the theor T Lo
i T o ) or sake of simplicity, and because it is important to separate
so that the effective permittivity tenseris found in Ref[1]

under simplifying assumptiondocality in the macroscopic the contribution tee (k) of the periodic inhomogeneity of the

) . .~ medium from the other contributions. For liquid crystals the
sense andiomogeneity such that all the optical properties - . o
fflssumptlon is well motivated. It is in fact well known that

related to the spatial dispersion, and in particular the opticathe dominant contribution to the optical activiand more

activity of chiral media, are lost. To take into account the O SR
nonlocality of the electromagnetic interactions and the mi_generally to the spatial dispersioof periodic liquid crystals

2 . . is related to the helical arrangement of their molecules. In
croscopic inhomogeneity of matter, two different problems L - ) X
i . . ~general, the intrinsic contribution defined byr;k), and due
must be solved. The first one, that is common to the liqui - . 4 L
. the chirality of the constituent molecules, is negligible.
and crystal phases, has been the object of many excelle

hd2—4 and 56| The oth that i oreover, helical structures made of achiral molecules have
monograp 42-4] and paperss,6]. The o her oné, that IS e recently discoverg¢d2—14. Their chirality and optical
specific of crystals, has been approached in its full generalit

recently[ 710, ¥1ct|V|ty are therefore entirely due to the periodic superstruc-

e 1 . ture. In short period liquid crystals, the continuous function
The two types of difficulties can be well understood in theg(r) defines the optical properties onnaesoscopic scale

fradm%v_vorlg Ozﬂlf] p?ﬁntblme%olog|cezl aptp:joachhof Agranov'd\/vhere the details of the structures on the molecular scale are
and GInsburd L. The liquids are treated as OITnogene.ouSdisregarded. In solid crystals(r) defines the optical prop-
in space and time even from a microscopic point of VIeW, ties of the statistical ensemble

because of the averaging due to the thermal fluctuations. The ~ .
The standard method to defie€k) as a function ok(r)

tensore is therefore defined on the statistical ensemble. It igs based on the following facts. A plane-wave decomposition
obtained by decomposing the electromagnetic field in plan%f the optical field is suitable'in homogeneous media, be-

waves and it explicitly depends on the wave vedtand N cause the plane waves are eigenmodes of the electromagnetic

the frequencyw of the plane-wave components, i.&, field. In periodic media, the eigenmodes are Bloch waves
=¢g(k,w). The assumption of homogeneity is not allowedand can be decomposed in interacting plane waves. The ef-
for crystals, whose permittivity tensor also depends @md  fective (homogeneoysmedium is implicitly defined by only
satisfies the relation(r,k;w)=¢(r+7,k;w), where/ is a  considering the long-wavelength component, that represents
lattice vector. This fact poses the additional problems to findhe macroscopic fielfll5]. The wavelengths of the neglected
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components are in the order of magnitude of the lattice peThe summations in Eq.7) take into account the multiple
riod p or smaller. We therefore expect that they have veryscattering within the medium. More precisely, they give the
small macroscopic effects in solid crystals, becguse\. In aqditional contribution te arising from the inhomogeneity
liquid crystals the ratigo/A can in principle have any value, of the periodic medium on the mesoscopic scale. In fact, Eq.
so that the definition of the limits of validity of the homoge- (5) states that only the componentg with q#0, which
neous model becomes essential. define the inhomogeneous part of the medium, are involved

The Bloch wave method has been largely used for SOIiCtthe homogeneous contribution is already included E)o

crystals[1,11,15. It has been extended to liquid crystals by . . S i
Zeldovich and Tabiryafil6] and by Galatol48]. This paper Equations(6) define the multlpI|C|tyN-of the sgatterlrlg and
is a continuation of the research done by Galatola. It gives fgﬂe that only the forward scattering contributess{()

contribution to the solution of one of the problems posed bu . . . L
not solved by Born and Huar{d], and treats quantitatively The equations given here are a simple generalization of

some of the problems that have been qualitatively discussel® €duations derived by Galatdl@], who only considers

by Agranovich and Ginsburg in their phenomenological ap_the double scattering. Terms that contain theomponents

proach to the spatial dispersion in crystfld]. of the polarization current aIready appear in the microscopic
approach of Born and Huang, in Sec. 44 of Rél, but they

are neglected in those following sections where the optical

Il BASIC EQUATIONS properties of solid crystals are considered.

The effective dielectric tensar of the macroscopic model

is a function of the Fourier components ©fr), i.e., of the
tensorse defined through lll. THE DIFFERENT APPROXIMATIONS

As discussed in the introduction, the definition of the ef-
e(r)= Eq: £qeXpiqg-r). (1) fective tenso® (K) in crystals requires some approximations.
The Bloch wave method neglects the short-wavelength com-
ie., (7) requires a further approximation, since the summation
overN has to be stopped at some finite vaNig,, in actual
80:; 2 computations. If the modulation amplitude ofr) and con-

5 sequently the componentg are small with respect te, the
and constitutes a first rough approximation #orThe other dominant terms in the summation are the ones corresponding
approximations are obtained by addingstterms having the to N=2 (double scattering In general, the approximation
general structure, already considered by Galatola is good enough. However, it
will be shown in Sec. V that for locally isotropic crystals the
sqle,qlsqu,(ql+q2)- . -G,(q1+...+qN71)eqN, €) terms corresponding thl=3 could be the dominantgnes.
It is evident that the complexity of the expressionsgk)
where essentially depends on the number of the relevant Fourier
2 componentss, of £(r). The most important liquid crystals
G :(2) [(k+q)2}l—(k+q)(k+q)—s_]‘1, (4) are periodic in only one directioflLD crystal$ and have a
“lc very limited number of nonzero components: three in the
cholesteric phase and five in the chiral smectic ph&es

and where the vectorg, satisfy the relations For such crystals, the expressionegk) is simple. However,

0, #0, (5) the structure of the matriceS, is such that it is not easy to
have an intuitive feeling of the dependencesgk) on the
g1+092#0,..., Qi+---+qy_1#0, and relevant parameters, as for instance the period of the struc-
ture and the light wave vector. It is therefore convenient to
g+ - +qy=0. (6)  find approximate expressions @ .

_ In one-dimensionallD) crystals having periog and pe-
In Eq. (4), k is the wave vector of the plane-waves propa-riodicity directionxs, Eq. (1) writes

gating in the effective homogeneous mediunis the 3x3
identity matrix, and k+q)(k+q) is a dyadic product.

The formal expression of can be written as ,
e(Xa)= 2 & eXpliraxs), ®

PP . G_
whereq=2/p. The matricess, only depend on the integer

numberr and the matrixG=G,, corresponding ta=qXs
(7 (i.e., tor=1), can be written as

XG_(Q1+Q2)' o G_(ql+"'+qN71)8_(q1+"'+qN71) .
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N (x3+xn)}l

2 -1
—| X+ —n ;(3"';” —(%)4 : 9
where
k ¢
n=—=—Kk (10
ko w

The expressiori9) of G suggests to expand this matrix in a
Fourier series of the parametef\ as

P
N

2
c=cO+Plcwi(P] g@s. .. (11)

The matrix G,, corresponding to the reciprocal vectqr
=rqXs, only differs fromG for the fact that one must seq
instead ofg. This is equivalent to substitufewith p/r in Eq.
(9), andG™ with

G(M=r-mG(m (12
in Eq. (11). The tensors depends orp/\ only through the
matricesG{™ , and it can be written as

2

P @4

z=;<o>+( 13

~ p
MWyl =
; ( P

where the coefficients(™ contain in principle an infinite
number of summations, correspondingNephoton scatter-

ing with N=2,3... . Up toN=23, the matriceg(®, =),
ande® are
E(O):S_+E S,G(_Or)s_r-i-E 2 er(_Or)sry
r+0 r+0 r'#0,—r

(0)
><(';—(r’#—r)‘c"*(f”rf)’

~ 1
eM= SrG(,lr)S,r‘l‘E 2 (er(—()r)sr’G(—()r’+r)
r+0 r#0 ¢/ 20,—r
0
X8,('./+r)+SrGggsr/Gg()r/+r)87(r’+r))1 (14)
~ 2
(@)= ErG(fzr)Sfr"'z Z (SrG(f)zsr’GE()r’+r)
r+0 r#0 r720,~r
X +£,6Ws,,G)
E—(r+n)T OO (1148 —(r+1)
2 0
+SrG(_r)SrrG(_()r,+r)€_(rr+r)),
where

GO= —_i
€33

o O O
o O O
~ O O
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0O
1
G(l): ——1 0 0 n, |,
£ n; np 9(313)
1 ;33_ ”i — NNy 9(123)
— 2
GP=—=| -mn, sy-n3 0|, (15
€33 2 2 2
9(13) 9(23) 9(33)
and
2 _
9% = — = (e1an1+ €290,
€33
2 1 -
g(13)=(n3—g(33))n1—813,
(16)
2 1 -
g(23)=(n3—g(33))n2—823,
1 _ _
2 1 2 2 2 2
0= — 0552+ —[elg+ e5a+ e1ini+ en3

€33
—2(&13n11N3+ e23NN3—&1N1Ny) |

A new set of approximations is obtained by only considering
in Eq. (13) the terms up to§/\)™. The lower order approxi-
mations, corresponding tm=0,1 andN=2, are the most
important ones and are indeed given by very simple expres-
sions.

A different and even more important way to represent

=(n) is an expansion in power series of the normalized wave
vectorn as

17

that gives another set of possible approximations. It is im-
portant to observe that the different terms of this last expan-
sion do not strictly correspond to the terms of the expansion
in power series ofp/\, because the tens®(™ contains
terms scaling asp(/)\)m', with m’=m,m—2, ... .This fact
appears evident if we consider the definition®@f™ given

by Egs.(9) and(11) [or the expression a&(?), Eq.(15)]. In
particular, the second rank tens~q[(0) is obtained by add-
ing to £© terms scaling asg/\)?,(p/\)%, ..., and the
third rank tensor Ei“ contains terms scaling as
(pIN),(p/IN)3, ... .

In conclusion, the Bloch wave method generates many
approximations foe (n) that depend on the maximum values
of three parameters: the multiplicity of the scattering, the
power of (p/\) and the rank of the tensors appearing in Eq.
(17). The last two are obtained by expanding the matrix
G(p/\,n) in power series of §/A) or of n. They are not
strictly necessary, becau§q{p/\,n) is already given by an
analytic expression, but they are of the most importance for
the study of the optical properties of crystals.

The above analysis is easily extended to 3D crystals. In a

cartesian frame witixs=g, the tensorG, is still given by

Eij(n):;ii(OH ajjini+ BijimNiNp+ - -+,
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Eq. (9), where @/\) is substituted by 2(|g|x) 1. Each  zero for light propagating along the periodicity direction
tensorG, can be expanded in power series of this last pa-NiS property is a simple consequence of the fact that the
rameter, but an expansion of all the tens@g in power terms appearing in the expressionsdt), Eq. (14), contain
series of p/\), wherep is an average dimension of the the tensorG' that, according to Eqs(15) and (16), be-
lattice cell, is more convenient and easily obtained. As it iscOmes identically zero ih=k/k, is parallel toxs. Let us
evident, the expression afbecomes rather involved, except "W discuss some interesting consequences of this important

: property.
for some cubic crystals. However, the fact to be able to ex Cholesteric liquid crystals are known for their huge rota-

presse by means of series expansions of the typ8) and {51y nower for light parallel to their helix axis, in the wave-
(14) allows to find some important properties of these tensorq;ength range fromp|n,—n,| to p, wheren, andn, are the
and ofe(n). local extraordinary and ordinary refractive indidd®]. For
higher wavelengths the medium can still rotate the polariza-
IV. OPTICAL ACTIVITY tion plane of light, but the rotatory power abruptly drops,
- becoming negligible for>5p. This unusual property is
We discuss here the propertiesadin), by assuming that  known since 195120], but it has never received a simple
all the elements ot(r) are real This means that we are explanation. According to our analysis, it is a particular case
consideringnondissipativeand locally nonchiral crystals  of a very general property, valid for any 1D crystal. In the
The reality ofe(r) has the following important implication: absence of the term scaling as/X), the main term giving
in Eq. (13), the terms scaling ap(\)™ arereal if m is even  optical activity scales asp{\)°. To evidence the practical
and purely imaginary if m is odd consequences of this fact we recall that the most important
For the two-photon scattering, this property is immedi-effect of the optical activity is the uniform rotation of the
ately found by adding the two terms that contajpande -, polarization plane of light, a fact that in anisotropic crystals
and taking into account the fact that regf) implies realG,  only occurs for light propagating along their optic axes, be-
with cause in the other directions linearly polarized light becomes
(m_ () elliptically polarized and the major ellipse’s axis oscillates
Glg=(=1)"Gy", (18)  around a given direction. The simplest and most known 1D
. crystals, as for instance cholesterics, chiral smectic C, most
because in defining E49) a sign change ofj=qx; is fully ~ TGB crystals, and Reusch pild&1], are macroscopically

equivalent to a sign change pf\ and uniaxial with the optic axis along the periodicity direction. In
. the limit of smallp/\ values, the uniform optical rotation of
gij(—a)=¢jj(q). (19 such crystals is therefore in general of little interest for ap-

h . hel-oh N iohtf q plications, because it comes from a term scaling @ ),
The extension to thé&l-photon scattering is straightforward. | i h gives a rotatory power scaling a3/\*. The optical

The effective dielectric tensor of a crystal defined by a, ity in, short period, 1D crystals can therefore be of in-

real tensore(r) can therefore be written as=¢'+ie”,  terest for applications if and only i&n optic axis of the
where effective medium is not in their periodicity direction
m m
pUApN (E) T = 3 (E) M (20) V. LOCALLY ISOTROPIC CRYSTALS
meen | A modd \ A

In what follows, we will consider the simple case of lo-
We recall that in the Born-Landau formalism, used here, the&ally isotropic crystals, whose dielectric tensor can be writ-

imaginary part ofs(n) defines the optical activity of the €N @se(r)l, wheree(r) is a scalar quantity andlis the 3

medium, that is the most important optical property related<3 identity matrix, that in the following will be omitted.
to the spatial dispersion. Since the tensor of ramkin the The homogeneous medium is in general anisotropic, owing

expansion(17) of &(n), contains terms scaling asp/(}\)m', to the presence of the tensdE%m) ir_1_the expression of, _
with m’=m,m+2, ..., Eq.(20) implies that such tensors Eq. (7). This equation greatly simplifies because the Fourier

are real ifm is even, purely imaginary ifn is odd. We re- COmponenteq commutes withey, and with the matrices

2z (m) i
cover here a well known property af(n), which in the Gq " - As a consequence of this fact and of the propét8g),

Landau approachi8] is a consequence of the fact that the the terms ofe coming from two-photon scattering cancel
quantity n,= (w/c)k, appearing in the expression &{n) each other and give no contribution to the optical activity. In

comes from the space derivativiE;/dx,, that for plane fact the quantity
waves reduces tik|E; .

Our analysis allows us to find many interesting properties
of crystals, and in particular the following ones, related to (21)
the optical activity. In the two-photon approximation, the js identically zero for oddn. The contribution to the optical
contribution ofe 4 to the optical activity of the terms linear in - activity of locally isotropic crystals only comes from scatter-
(p/\) is zero for light parallel t@. For the particular case of ing involving at least three photonsr from the intrinsic
1D crystals, all théerms ofe scaling as p\ are identically  chirality of the constituent molecules.

s,qGém)8q+ 8qG(,mq)s,q= Ggm)[s,qsq+ (—=1D)Meqe _q]
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A further simplification, concerning the tensd@™, comes from the fact that the tensglappearing in their expressions
is now a scalar quantity. In a coordinate system wheeeq, the first five tensor&™ are represented by the matrices

000 0 0 n e—n? —Nn,  ning
1 1 1 _
G(O)Z—: 0O 0 O G(l)Z—: 0 0 n, G(2)=: — NNy g—ng NoNns s
& & &
0 0 1 nl n2 0 n1n3 n2n3 ni‘f' ng
L —2n3(s—n?) 2n1nyns n,a
G®==| 2nin,n;  —2n4(e—nd) n,a , (22)
&
n,a n,a —2n3(n+nd)
L (e—n3)  —Nnin,  Ningc
GW==| —nn; (s—n3) nynzc |(2nj—a),
&
niNsc  nmongc  (n+n3)

where conditions of continuity for the tangential components of the
field vectorsE andH are no more valid. The problem has
been at least partially solved only for the simple case of first
order derivative$22—25. To avoid the use of the boundary
conditions, we consider the wave vectdrgj=1,2) of the
internal plane-waves generated by the external one. For a

If the spatial dispersion is neglected, the effective medium isnacroscopically uniaxial medium with the optic axigpar-

—n21in2_n2_a
a=ni+n;—ns—e,

c=—(2n3+3a)/(2n3-a). (23)

uniaxial with the optic axis coincident witks, because of
the full rotational symmetry@..) of ¢(r) around this axis.
The spatial dispersion breaks the uniaxial symmetry(of),
except for the particular case of light propagating alapg

allel to the incidence plané-ig. 1), the vectorsk; and ks,
refer to the TE and TM polarized waves. The comporignt

is equal to the tangential component of the external wave
(phase matching conditionthe z components arekgn; ,

wheren; are the eigenvalues of the<#4 matrix B appearing

VI. LIMITS OF VALIDITY OF THE MACROSCOPIC in the propagation equation:

MODEL: THE ROLE OF SPATIAL DISPERSION ds

EZikoB(k)B, (29

As repeatedly stated in the preceding sections, many ap-
proximations are required to define the effective permittivity

tensorE(n) in crystals. The definition of the limits of validity where 3 is a four-dimensional column vector that, in the
of the macroscopic models is therefore as important as thBerreman formalisnj26], is defined as the transpose of the
definition of &(n). It is particularly interesting for liquid row vector @,,hy,e,,—h,), wheree=(uq/€p) YE and
crystals, since the ratiop{\) can have any value. In this h=(uo/€e) Y H. In the optical geometry of Fig. 1, the
section we consider the models that take into account thequation systeni24) splits in the two independent systems
multiple scattering up tdl=4 and the powers ofg/\) up to
m=c, The cases witlm=2 andm=4 are considered in the
next section.

To test the limits of validity of the macroscopic models
we compare the optical field generated by an external plane
wave within a semi-infinite crystal and the field generated in
the corresponding homogeneous medium. This is a good test,
but it poses problems that are not easy to be resolved.

For the homogeneous medium, the main difficulty comes
from the boundary conditions required in the presence of
spatial dispersion. As far as we know, such problem has
never been approached in its full generality. The difficulty is
due to the fact that the terms efk) depending on then
power ofk come from the space derivatives of ordeof the FIG. 1. Optical geometryk; is the wave vector of the input
electric field. In the presence of these derivatives, the usudight, x; is the symmetry axis of the crystal.

<V
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d (ex) . ( _nXEXZ/EZZ 1_n)2(/EZZ ) (ex) | | °
d_ :|k0 _ _ o~ _ _ _ y
z hy Exx Exz€zxl €22 —MyExzl €22 hy e R °
(25 re oo
1w///
d(ey) k 0 1(ey) 26 E ************»&****Zzzg
—_— :l _ , L ° (o] |
dz\—h,/” "°\%,,~nZ 0/|-h, (26 o ™ o
corresponding to TM and TE polarization states, respec- °¢f Vs
tively. The difficulty of our problem reduces now to the fact o/ /
that the matrix B explicitly depends on its eigenvalues osf
through the quantitie%ij(k), i.e.,B=B(k). We have com-
putedk, with the following iteration procedure. We first in- oz 8
sert in Egs.(25) and (26) the tensorE(O) obtained by ne-
glecting the k-dependent part of(k), to obtain a first 0 02 04 06 08 1 12 Ta
approximation fork,=kgn. Each one of thesk, values is P

now inserted ine (k) to obtain a better approximation. The  FiG. 2. Componentsn, of the normalized wave vecton
iteration of this procedure gives rapidly converging values=k/k, for the running modes in the periodic medi(fll lines)
for k, . optically defined by Eq(27) and for the plane waves in a homoge-

For the periodic medium, general and reasonably simpl@eous medium with dielectric tense(0), in theoptical geometry
methods giving the internal field are available for 1D crys- Fig. 1, and with the following parametersy, =0, 9=m/2, &
. il di ) il

tals. We have used the method develop.eEiZﬂ']., thatmakes _; . —0.25. In the two upper curves the quantity has the
use of a propagation equation formally identical to E),  meaning of an effective refractive index. The figure also describes a
where the vectop and the matrb8 become infinite dimen- o 4i withs £ 1, if we substitutes, with &1/, n, with n,\z
sional. The eigenvectors & define the Bloch waves gener- _ \/=
ated within the crystal by the external one, the correspondin&nd)‘ with X Ve.
eigenvalues); (j = —«,) definek; ,=kgn; . Herek; is the ) ) o~
wave vector of the long-wavelength component of thetWo figures. The Fig. 2 shows that the approximation
j-Bloch wave(the wave vectors of the other components are=&(0) is not valid for largep/A values, thus evidencing the
k;+4). In general, only a limited number of eigenvalugs ~Main role played by the spatial dispersion foin>0.1. In
are real. They correspond to propagating modes and defifdd: 3, two full curves are rather well fitted by the model.
the bulk properties of the electromagnetic field within theDespite this fact, it is evident that the macroscopic model
medium. The other ones are only present in a boundary laydpses any meaning fop=\, where more than two full
having finite thickness. They are responsible for some intercurves are present. Here the periodic medium gives Bragg
esting boundary effec®,25], that are not considered here. diffraction, and the lowen; curves give thé, values of the

To compare the wave vectors given by the mesoscopiéliffracted waves. .
and macroscopic models, we have considered the simple At oblique incidence, a diffracted beam of nonzero order
case of a locally isotropic medium whose dielectric tensor ia@n appear at lowep values, thus restricting the range of
given by ej; =&(X3) 6jj , with

e(Xz)=¢+2¢e, COLXs3)

fe)

Es_-i—sl[eXF(_in3)+eXF(in3)]' (27) M

The local isotropy and the fact that is an axis of full
rotational symmetry ensure that the TM and TE polarizations °8f
are not coupled. Since(r)=¢(—r), the structure is achiral <"
and macroscopically uniaxial, with the optic axis parallel to s
X3 (we have purposely considered an achiral system, becaus
the validity of the macroscopic model for chiral systems has ,,|
already been discussed [i9,10]).

The Figs. 2 and 3 give the plots Y8\ of the quantity
n,=k,/kg, that represents an effective refractive indek,f

=ky=0. In Fig. 2, thek-dependent terms of are neglected, ‘ ‘ ‘ ‘ , ,
0.2 04 08 08 1 1.2 14

i.e., z=¢(0), whereas they are taken into account in Fig. 3. o
The full curves give the; values of the propagating modes
in the periodic medium, which are exactly the same in the FIG. 3. Same as Fig. 2, with(k) instead ofz(0).

™

021704-6



BLOCH WAVE APPROACH TO THE OPTICS OF CRYSTALS PHYSICAL REVIEW & 021704

p\2 p\*
+28§4x) s

x
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~ 5.2
ooy e =et2e]

08l - — —
g|=e—2gie. (28
_:NO.G*

The tensore(n) is given by e=g(0)+&@(n)(p/\)?
+e™(n)(p/\)*, where n=k/k, and the tensorg®(n),
e®)(n) are easily derived from the equations given in Secs.
. IV and V.

In the optical geometry defined by Fig. 1, with=x and

04

o2

ol

. N

"oz . normally incident light, the effective refractive indexsat-

o4l \\\@ - isfies the equations

\‘\K S,

i - N L L S L R
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FIG. 4. Real parn, and imaginary pam of n,=k,/kq vs the - ﬂnz E) —n2=0 (29)

incidence angle for the Bloch waves within the periodic medium L2 A '

(full lines) and for the plane waves within the macroscopic medium

defined byz (k). The periodic medium is the same as in Fig. 2, with for the TM and TE polarizations, respectively. Interestingly,

p=0.25.. The optical geometry is given in Fig. 1, with=0. The  the first equation is biquadratic and gives therefore two
refractive index of the external mediumris=1.5. The quantity, couples of solutions. In general, the dispersion relation in

is real at the left side of the total reflection angle, purely imaginaryPresence of spatial dispersion can give many solutions, but
at the right side. only four are physically acceptable. Here, a couple of solu-

tions of the first equation diverges f@/A—0, giving an
internal wavelength smaller thgm i.e., outside the limits of
validity of the model(the conditions under which a third
couple of solutions could be physically meaningful are dis-
cussed in Ref[11)).

The solutions given by the above approximation have

validity of the model by a factor 2. In the considered geom-
etry, with x5 orthogonal to the layer normaly= 7/2), the
model is valid up top value nearly equal to one-half of the
internal wavelengthnamely, in the whole p interval where

the external wave can never give rise to Bragg dlffract|onbeen compared with the ones obtained in Sec. VI in the

(see Fig. 4. approximation up to §/\)*. Figure 5 shows that even the

Let us now consider the case with# /2. If X3 makes an simple (o/\)2 approximation, where the terms scaling as
angle 9 with z, a sample of the crystal between the planes P pp ’ 9

o -~ . : . | (p/\)* are neglected, is good enough to any practical pur-
zgﬁf[’aa:ng /Zs;ngJrF?)rbaegiveise asfo?p%r)\air;gi;nvgﬂil gir\?élg%i;:_on pose in the whole range of validity of the macroscopic model

fracted beams of orden# 0. Despite this fact, our compu- (at least for the periodic medium considered here
tations suggest that the macroscopic model can still be
usefully applied in this interval, up tp/\~0.5, because in

this range the grating works in the Raman-Nath regime and A very general and fully analytic expression is found for
the intensity of diffracted beams is generally very small. e tensof of short periodic crystals, that is formally written

as the sum of the space averagef ¢(r) and of terms that
take into account the multiple scattering due to the inhomo-
geneity of the structure on a mesoscopic scale. In general, all
the terms corresponding to scattering with multiplicity
The use of the macroscopic model can avoid the heavy-2 give a contribution toe, whose imaginary par¢” is
calculations required by the actual periodic crystal. Howevetelated to the optical activity of the medium and is identi-
the full expression of(k) given by Eq.(7) is still rather  cally zero for achiral media. However for locally isotropic
involved and requires a numerical analysis. In this sectionang chiral crystals, the contribution ¥ of the terms with
we compare th& values given by the full expression efk) N=2 is identically zero. As a consequence of this fact, the
with the approximations obtained by considering the firstoptical activity of such crystals scales as}°, where ()
terms of its expansion in a power series @fX). To this is the difference between the maximum and the minimum

VIIl. SUMMARY AND CONCLUDING REMARKS

VII. LIMITS OF VALIDITY OF THE LOWER ORDER
APPROXIMATIONS

purpose, we consider the crystal defined by EZ) and
make use of a reference frame, X,, X3 with x5 along the

periodicity axis. In this frame, the tensef0) is diagonal,

value ofe(r).
The macroscopic medium displays strong spatial disper-

sion, i.e.,e=¢(k), wherek is the light wave vector. Both

with £11="¢5=¢, , £33= ¢ . In the two-photon approxima- (k) and its nondispersive pas(0) are expanded in power

tion, such quantities are

series of the ratigp/\, to better describe the optical proper-
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FIG. 5. Difference between the refractive in-
dices of the homogeneous medium computed at
any order ofp/\ and the ones given by the ap-
proximation with terms up tog/A)? for two dif-
ferent values ok,. The periodic medium is the
same as in Fig. 2 and the optical geometry is
given in Fig. 1, withd=7/2.
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ties of the medium and to find simple approximate expressome possible developments of the research. The most im-
sions for these tensors. The obtained equations show that tip@rtant unsolved problem concerns the definition of a self-
optical activity of a crystal, that is periodic in only one di- consistent set of bulk and boundary conditions in the pres-
rectionxs, is negligibly small for light propagating along.  ence of spatial dispersion. This problem is under study,
More precisely, it scales ap(\)°. This unusual scaling law, together with the important problems of the boundary effects
already known for cholesteric liquid crystals, receives hergn crystals and of the limits of validity of homogeneous mod-
an explanation and is generalized to all 1D crystals. els for 2D and 3D crystals.

The limits of validity of macroscopic models, already dis-  As an obvious continuation of this research, we are con-
cussed in9,10], are reconsidered on the basis of the £dUasidering the application of the found equations to crystals
tions given here. For achiral crystals, the approxima#on whose tensor field(r) is known, and in particular to some
=¢(0) is generally valid up tg/\~0.1. This approxima- interesting periodic liquid crystals phases and artificial struc-
tion is particularly interesting because it allows to make usdures. For such crystals, the equations given here are perhaps
of the usual and well known boundary conditions for thethe most convenient published up to today, at least for the
field vectorsE andH. The full expressiors (k) extends the Pulk properties. For this purpose, we observe that inLtoe
validity of the model up t@/\~0.5. Even the lowest order literature the trivial approximatioa= ¢ is generally used for
approximations, which consider only a few terms in theperiodic crystals witlp<<\, because of the lacking of better
(p/\)™ expansion, are generally very good. However, theand reasonably simple approximations.
model could fail in some very particular optical geometries, We also presume that an extension of the theory to crys-
as discussed at the end of Sec. VI. tals with some degree of randomness and to the acoustic

Let us now recall some still open problems, and suggestvaves could be of interest.
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